In recent years the number of vehicles occupying roadways in major cities has rapidly intensified. The result is increased commuter travel time, reduced traffic safety and higher traffic-related pollutant emissions. With limited land space making new roads very costly, the use of traffic management techniques is the only practical option for relieving this congestion.


Enabling communities to proactively respond to traffic related events, Digital Security and Surveillance (DSS) intelligent traffic control (ITC) systems use Intel® Core™ and Atom ™ processor-based devices to perform real time analysis of traffic conditions, determine vehicle and driver behavior and autonomously manage traffic flow.


What’s more, these systems can be used by municipalities worldwide not only to battle city congestion and pollution but, by controlling evacuation in an orderly manner, as a powerful tool during disaster management situations (floods, storms, wild fires, etc.). ITC can help authorities know how to distribute law enforcement resources, preempt traffic lights’ normal operation and allow safe passage of emergency vehicles at an intersection. During disasters ITC systems also can temporary permit road shoulder use, regulate ramp metering and provide motorists with timely warnings.


Legacy traffic control systems rely on inductive-loop traffic detectors, installed on the surface of a road to detect vehicles passing or arriving at a certain point, for instance an intersection or motorway entrance. When a vehicle passes over the loop or is stopped within the loop, the vehicle induces eddy currents in the wire loops, which decrease their inductance. The decreased inductance actuates an electronics unit output which sends a pulse to the traffic signal controller signifying the passage or presence of a vehicle


One of the main shortcomings of these under-pavement traffic loop detectors is that they are expensive to install and maintain.  Moreover, they cannot be replaced or fixed without disturbing traffic.


For all of these reasons video-based traffic flow analysis is getting more attention. Video sensor systems utilize sophisticated algorithms to detect traffic incidents, measure traffic flow and track vehicles across multiple lanes. These traffic control strategies interconnect closed-circuit television, video analytics, video recorders to store content for reference later on and network data communicators to pass this information on to remote, mobile or central traffic control management teams (see Fig. 1 below)


Figure 1.png


Figure 1 A typical video-based DSS surveillance system


Multi-functional devices such as the Axiomtek rBOX104 Embedded Field Controller provide the traffic control system with the required traffic data and at the same time transmits video images of the junction or motorway section under surveillance to a processing center. The DIN-rack, fanless embedded computer supports low power Intel® Atom™ processors Z510PT (1.1 GHz) or Z520PT (1.33 GHz).  With an extended temperature range of -40°C to 70°C it can be used in extremely hot or cold environments. Multiple built-in serial ports, high-speed LANs and USB 2.0 ports enable fast and efficient data computation, communication and acquisition. Supporting Power-over-Ethernet on ports 1 to 4 makes it ideally suited for outdoor applications that employ PoE IP cameras.


A Network Video Recorder (NVR) Interfaces with these IP cameras. Its primary focus is on video decoding and display and local video storage. An NVR will likely require more LAN ports with more robust throughput capabilities than a stand-alone digital video recorder (DVR) because of the incoming IP packets that carry encoded video information from the connected IP cameras.


With Nexcom’s NViS 2280 mobile megapixel surveillance becomes reality. The NVR (Fig. 2, below) is powered by the Intel® Atom™ Dual Core D2700 2.13 GHz processor, which combines high performance with low power consumption. The unit can control  up to 16 IP cameras with HD resolution and. is further equipped with Dual Display function via VGA and DVI-D,  2x Hot Swap HDDs for up to 1.5TB and an accelerometer. Moreover, an eSATA interface allows connection of an additional external hard disk. Unlike video capture card solutions, Nexcom’s NViS hybrid solutions bring video decoder functionality onboard and can render images without additional hardware.


The NViS is also-suitable for deployment in vehicles, because it is outfitted with comprehensive wireless communication features such as 3.5G, WiFi as well as GPS modules. Using the GPS function one can link video records with location coordinates. Moreover, the device is designed for power input between 9V and 36VDC.




Figure 2 The Nexcom NViS NVR can be used from a mobile or a fixed base



The Trenton Systems TVC4502 bundled video wall controller provides a hardware and software solution for advanced video display walls in a traffic control situation room. The core of the TVC4502 fanless video display controller is a Trenton motherboard with an Intel ® Xeon®   C5500 Series processor and multiple I/O and network interfaces. This device comes ready to deploy right out of the box, featuring up to four 1080p high-definition inputs delivered across four 1080p high-definition outputs. Two front access drive bays support up to two 2.5” removable and hot-swappable storage drives. The system’s front panel also includes a slim-line optical media bay, two USB ports, diagnostic LEDs, power and system reset switches.  The accompanying software bundle is built on the Microsoft® Windows 7 operating system and enables local or network video wall control, scheduling, video source switching and compositing, bezel management and edge overlap with edge blending projectors.


As demands on DSS traffic systems become more complex, equipment manufacturers and hardware integrators need to deliver increasing sophisticated video solutions that will handle traffic forecasting as well as real-time monitoring. For these systems, the workloads handled by the CPU and GPU are substantial. They must control video encoding, video decoding, video scaling and display, hard disk video storage, video packetization for streaming, as well as running the software video management GUI as the interface for live video viewing. And all of this must be done in a manner that does not sacrifice the accuracy of extracted traffic flow data.


The 3rd generation Intel® Core™ processor family alleviates many of these issues with much more powerful integrated graphics; 3D graphics performance is up to 60% higher than that of the prior generation. What is more, the 3rd generation Intel® Core™ processor also is up to 15% faster than its predecessor, enabling faster, more sophisticated image and video analysis. Many of the visual surveillance algorithms currently in use can benefit from the Intel® Advanced Vector Extensions (Intel® AVX), which provide 256-bit floating point processing. Video streaming and storage is enhanced by Intel® Quick Sync Video 2.0, which performs encoding and decoding in hardware for effortless integration of full 1080p HD video and high-resolution cameras. Among other benefits, Intel Quick Sync Video 2.0 performs video transcoding at twice the speed of the previous generation, and greatly reduces processor loading during transcoding..




Solutions in this blog


Nexcom NViS 2280


Trenton Systems TVC4502




Axiomtek, Nexcom, Trenton Systems and  Microsoft are Associate members of the Intel® Intelligent Systems Alliance.


Related topics:

•          Digital Security & Surveillance  - Top Picks (blogs, white papers, and more)


             Sensing and Analytics - Top Picks (blogs, white papers, and more) 


Murray Slovick

Roving Reporter (Intel Contractor), Intel® Intelligent Systems Alliance