This week, 6WIND announced extensions to the 6WINDGate™ networking software that deliver a 10x performance improvement for virtual switches. These new capabilities address three critical scalability challenges faced by service providers operating public/private cloud data centers as well as telecom infrastructure architected around Network Functions Virtualization (NFV) concepts.

The first scalability challenge relates to the number of Virtual Machines (VMs) per server blade. This VM density is increasing rapidly, leveraging on-going improvements in the performance of the x86 processors used on those blades. Today, a typical server blade in a service provider data center hosts at least 50 VMs, with that number expected to grow to hundreds within a few years.

Because of this growth in the number of VMs running on each server blade, the data center network needs to expand beyond its current limit at the Top-of-Rack (ToR), to a model where a virtual switch on each server blade is used to distribute the increasing volume of network traffic to virtualized applications. This function is typically implemented using the open-source Open vSwitch (OVS) or an equivalent proprietary virtual switch.

The second scalability challenge is the network bandwidth required by VMs. With the constant growth in rich media applications, individual VMs can require sustained network bandwidth of 1Gbps or more. As VM density increases, this bandwidth requirement can quickly outstrip the capacity of a standard virtual switch, constraining either the number of VMs that can be instantiated on a blade or the performance seen by the users of those VMs.

The final major challenge is a result of evolving traffic patterns within data centers. In traditional client-server data centers, network traffic was predominantly “North-South”: from the Internet, through the core switch and aggregation layer, to the ToR switch and then to the server blades. Within multi-tenant Web 2.0 data centers, however, VM mobility and VM sprawl cause the majority of traffic to be “East-West”: between VMs located on different physical server blades.

This growth in East-West traffic means that high-bandwidth VM-to-VM communication (VM2VM) is mandatory. To isolate and secure VM2VM, however, requires secure tunneling services, running on the virtual switch, that extend beyond the basic Layer 2 features provided by a typical virtual switch. Within a cloud, these ensure that only specific VMs can access the applications and data owned by other VMs. Between clouds, policies are enforced to ensure that data and traffic for one cloud is not visible to another.

Adding to the overall security- and networking-related workload that must now be supported on server blades is the increasing trend towards the use of overlay network technologies which avoid the 4,094 tunnels limitation of traditional VLANs. Data centers are now adopting VXLAN and NVGRE protocols, with 16-bit IDs that allow for 16 million tunnels.


The new extensions to the 6WINDGate networking software provide solutions to these three challenges, delivering a data plane solution that achieves 5x - 10x acceleration for the baseline Layer 2 switching function.


Thanks to this increase in Layer 2 switching performance, data center operators can achieve the increases in VM density that are enabled by on-going improvements in the performance of server processors. They can also deliver high network bandwidth to individual VMs, addressing the performance needs of users running streaming media applications or other bandwidth-hungry workloads.

At the same time, 6WINDGate delivers high performance on the necessary secure tunneling protocols such as IPsec, GRE, NVGRE, VLAN and VxLAN.

Within the virtual switch, the 6WINDGate data plane spies on 6WINDGate spies on configuration messages from the virtual switch control plane to its data plane, intercepts the appropriate packets and processes them within the 6WINDGate fast path, thereby achieving the 5x – 10x performance acceleration.

These high-performance switching, tunneling and security functions are achieved with no changes required to the virtual switch software itself.

6WINDGate is also fully-compatible with OpenFlow and completely transparent to the applications running on the platform, which do not need to be recompiled or re-verified in order to work with this high-performance solution.

We will be demonstrating the use of 6WINDGate to accelerate the standard Open vSwitch, in partnership with Big Switch Networks and Ixia, in our booth number 401 at the Open Networking Summit in Santa Clara, CA from April 15th through 17th. We hope to see you there!